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Algorithms for the gradient method of solution of the inverse problem on determination of the nonlinear ther-
mal-conductivity coefficients are given. Results of numerical experiments are discussed.

Introduction. In [1], we consider the problem of functional identification of the nonlinear thermal-conductiv-
ity coefficient λ(T). Behind the approach proposed is the gradient method of numerical solution of inverse heat-con-
duction problems [2–4]. We note that, in the traditional approach to finding λ(T), one uses a finite-dimensional
approximation of a coefficient by the system of basis functions [4], whereas in [1], we propose a method of solution
of inverse heat-conduction problems without preliminary approximation of the functions sought; this method uses new
representations of the operator conjugate to the internal-superposition operator, which makes it possible to obtain for-
mulas convenient for numerical calculations of the values of the conjugate operator.

In the present work, we propose algorithms of functional identification of the coefficient λ(T), describe com-
putational experiments, and discuss calculation results.

Computational Formulas. We give the formulas from [1], which are necessary for numerical realization of
the algorithms of solution of inverse heat-conduction problems. The system of equations for finding λ(T) has the form

c (T) 
∂T

∂t
 = 

∂
∂x

 



λ (T) 

∂T

∂x




 ,

T (x, 0) = T0 (x) ,   T (0, t) = g1 (t) ,   T (b, t) = g2 (t) ,

y (t) = T (x∗, t) .

(1)

Here (x, t) 2 Ω = [0, b] × [0, tf] and T0(x), g1(t), g2(t), and y(t) are the prescribed formulas. The point x∗ lies within
the segment [0, b]. The approximations of the function λ(T) are prescribed by the recurrence system

λn+1 = λn − βnln ,

ln = Jλn

 ′  − γn−1ln−1 ,   l0 = Jλ0

 ′  , (2)

where λ0 is the initial approximation, the parameter γn−1 is determined by the equality γn−1 = −
NJλn

 ′ NΛ
2

NJλn−1
 ′ NΛ

2
, βn =

−∫ 
0

tf

pn(s)ν(x∗, s)ds

∫ 
0

tf

ν2(x∗, s)ds

, N⋅NΛ is the norm in the Hilbert space L2[T(1), T(2)] of functions summable with the square on the
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segment [T(1), T(2)] or the norm in Sobolev’s Hilbert space W2
1[T(1), T(2)] of functions absolutely continuous on the seg-

ment [T(1), T(2)], and ν is the solution of the initial boundary-value problem

∂

∂t
 (c (Tn) ν) = 

∂2

∂x
2 (λn (Tn) ν) + 

∂

∂x
 



ln 
∂Tn

∂x




 ,

ν (0, t) = ν (b, t) = 0 ,   ν (x, 0) = 0 ;
(3)

Tn is the solution of problem (1) for λ(T) = λn(Tn); pn(t) = Tn(x∗, t) − y(t).
The problem conjugate to (3) has the form

c (Tn) 
∂w

∂t
 + λn (Tn) 

∂2
w

∂x
2  − δ (x − x∗) pn (t) = 0 ,

w (x, tf) = 0 ,   w (0, t) = w (b, t) = 0 . (4)

According to [1], the gradient Jλn
 ′  may be determined from one of the following relations:

J
λn

1
 ′  = − 

d

dz
 ∫ 
0

b

 ∫ 
0

tf

 χ (z, Tn (x, t)) 
∂Tn (x, t)

∂x
 
∂w (x, t)
∂x

 dtdx B − 
d

dz
 ∫ 
Ω

R (z, x, t) 
∂Tn (x, t)

∂x
 
∂w (x, t)
∂x

 dxdt , (5)

J
λn

2
 ′  = − ∫ 

Ω

∂Tn (x, t)
∂x

 
∂w (x, t)
∂x

 dxdt −  ∫ 
T
(1)

z

 ∫ 
Ω

r (τ, x, t) 
∂Tn (x, t)

∂x
 
∂w (x, t)
∂x

 dxdtdτ , (6)

J
λn

3
 ′  = − ∫ 

Ω

∂Tn (x, t)
∂x

 
∂w (x, t)
∂x

 dxdt −  ∫ 
z

T
(2)

 ∫ 
Ω

R (τ, x, t) 
∂Tn (x, t)

∂x
 
∂w (x, t)
∂x

 dxdtdτ . (7)

Here χ(z, s)  = 




1   for   T(1) ≤ s ≤ z ,

0   for   z ≤ s ≤ T(2)
 is the characteristic function of the set 



sT(1) ≤ s ≤ z



, T(1) =    min

(x,t)2∂Ω
   T (x, t)

and T(2) =    max
(x,t)2∂Ω

   T (x, t) and R(z, x, t)  and r(τ, x, t) are the characteristic functions of the sets ω(z)  =




(x, t) 2 ΩTn(x, t) ≤ z ≤ T(2)


 and ω

__
(τ) = Ω \ ω(τ) = 


(x, t) 2 ΩT(1) ≤ τ ≤ Tn(x, t)


 respectively.

The norm of the gradient Jλn
 ′  is found as

NJ
λn

1
 ′ N

L2

2
 =  ∫ 

T
(2)

T
(1)

 

J
λn

1
 ′ 



2

 dz ,   NJ
λn

i
 ′ N

W2

1
2

 = 






 ∫ 
Ω

∂Tn (x, t)
∂x

 
∂wn (x, t)

∂x
 dxdt








2

 +  ∫ 
T
(1)

T
(2)

 lni
2

 dz ,   i = 2, 3 , (8)

where

ln2 = ∫ 
Ω

r (τ, x, t) 
∂Tn (x, t)

∂x
 
∂w (x, t)
∂x

 dxdt ;   ln3 = ∫ 
Ω

R (z, x, t) 
∂Tn (x, t)

∂x
 
∂w (x, t)
∂x

 dxdt . (9)
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In describing computational experiments, the variants of the algorithm (2) (I, II, and III) will correspond to
the numbers i = 1, 2, and 3 in the notation Jλn

i
 ′ .

Results of Computational Experiments. Difference methods presented in [5] have been used for numerical
solution of the initial boundary-value problems (1), (3), and (4). The integrals in (5)–(9) were computed by the stand-
ard trapezium method. Also, we used the procedure of restoration of the iteration process (2) in the case of increase
in the residual on the nth + 1 iteration (the procedure involved the selection of λn(T) as the initial approximation λ0
and subsequent solution of problems (1), (3), and (4) with a new initial approximation.

The numerical experiment was carried out for the model functions λ(T) = λm(T) of the form

λm (T) = − 0.02T + 50.0 , (10)

λm (T) = 











0.023T + 34.67         at  T 2 [30
o
C, 700

o
C] ;

− 0.045T + 81.82     at  T 2 [700
o
C, 1200

o
C]

(11)

with different initial approximations λ0 and at different points x∗ of measurement of the temperature.
For the calculations, we selected the parameters b = 0.27 m and tf = 2.0 h. The results have been obtained

for the number of nodes Nx = 55 in the spatial variable and the number of nodes Nt = 200 in the temporal variable;
from the conditions of approximation of the delta function in (4), the point x∗ coincides with the grid node. The be-
havior of the functions c(T) [6] and g1(t) = g2(t) = g(t) [7] is shown in Figs. 1 and 2. The computation results are
presented in Figs. 3–7. In computing λ(T), we used both the accurate input data and noise-affected data.

Figure 3 gives numerical calculations of the thermal-conductivity coefficient at different points x∗. Figure 3a
presents results of restoration of λ(T) according to algorithm I. We note that in this case selection of the point x∗
makes it impossible to attain satisfactory relations λn(T(1)) C λm(T(1)) and λn(T(2)) C λm(T(2)) for the boundary values
of temperature and for fairly large n. The results of calculations according to algorithm II (Fig. 3b) show that the
λn(T(2)) values are satisfactory at T = T(2), whereas we were unable to substantially improve the λn(T(1)) values. Figure
3c illustrates the operation of algorithm III.

Figure 4 presents the overlap of the results of restoration of the thermal-conductivity coefficient according to
the three algorithms for the model problem selected. Figure 5 gives results of restoration of λ(T) with the derivative
(11) discontinuous in T, which have been found for different values of the residual

εn = ∫ 
0

tf

pn (s)2 ds , (12)

Fig. 1. Heat-capacity coefficient vs. temperature. c, W⋅h/(m3⋅oC); T, oC.

Fig. 2. Boundary values of temperature vs. time. g(t), oC; t, h.
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upon the attainment of which the algorithm halts.
The exactness of the solution on the right-hand or left-hand end of the temperature interval increases if the

point of measurement of the temperature x∗ is located closer to one end of the interval [0, b], and also depends on
selection of the initial approximation. This is characteristic of the algorithms in question. However, the number of it-

Fig. 3. Results of calculation of the thermal-conductivity coefficient according
to algorithm I (a), according to algorithm II (b), and according to algorithm III
(c): 1) λ0; 2) λm; 3–5) λn [3) x∗

1 = 0.025; 4) x∗
2 = 0.135; 5) x∗

3 = 0.25]. λ,
W/(m3⋅oC); T, oC.

Fig. 4. Results of restoration of the thermal-conductivity coefficient for the
point x∗ = 0.135 according to algorithms I (1), II (2), and III (3) and their
comparison to the zero approximation λ0 (4) and the model function λm (5).
λ, W/(m3⋅oC); T, oC.
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erations necessary for attainment of the prescribed exactness, depending on the selection of the point x∗, is signifi-
cantly different for different algorithms: in algorithm I, the number of iterations is small and virtually independent of
the selection of the point x∗; in the case of algorithms II and III, the number of iterations necessary for attainment of
the exactness indicated substantially depends not only on the selection of the point x∗ but on the selected initial ap-
proximation λ0 as well. The dependence of the number of iterations on the location of the point x∗ and the selected
initial approximation λ0 in the case of the model function (10) for algorithm II is presented in Table 1.

The results of the numerical experiment with the use of accurate input data enable us to state that the method
yields a nonuniform approximation for λ(T), which, in principle, reflects the general properties of the gradient methods
of solution of ill-posed problems [2–4]. This nonuniformity manifests itself as boundary effects: depending on the form
of the algorithm (I, II, or III), the λn(T(1)) and λn(T(2)) values at the limiting points of the interval of variation of λ(T)
are close to the initial approximation. The nonuniformity of the approximation of λn(T) to λ(T) occurs on both ends
of the interval of variation of λ in algorithm I, at the left end in algorithm II, and at the right end in algorithm III
(see Figs. 3–5). An analysis of the character of nonuniformity of the approximation to the solution sought suggests the
possibility of combining numerical results obtained through algorithms I, II, and III to find a more accurate approxi-
mation of λ(T) at the ends the interval [T(1), T(2)] or refining the results in the case of the existence of breakpoints on
the plot of the function λ(T). For this purpose, we subdivide the domain of definition of the function λ(T) into three
or (in the case of the absence of breakpoints) two half-open intervals. Then the function λ(T) may be represented in
the form

λ (T) = χ1 (T) λ3
 (T) + χ2 (T) λ1

 (T) + χ3 (T) λ2
 (T) ,

where χi(T) = 










1   at   T 2 [T(i), T(i+1)] ,

0   at   T 2/  [T(i), T(i+1)
, T(1) =    min

(x,t)2∂Ω
   T (x, t),  T(4) =    min

(x,t)2∂Ω
   T (x, t), T(1) < T(2) < T(3) < T(4); λi(T) is

the solution of the inverse heat-conduction problem obtained using the ith variant of the algorithm.
The influence of the error of the input data on the solution of the inverse heat-conduction problem was inves-

tigated using quasiperiodic high-frequency disturbances of the function y(t) input for the algorithms. The input data

Fig. 5. Results of numerical restoration of λ(T) with a discontinuous value

∂λ
∂T

 according to algorithm I (a) and according to algorithm III (b): 1) λ0; 2) λm;

3) λ15 (a) and λ4015 (b). λ, W/(m3⋅oC); T, oC.

TABLE 1. Number of Iterations for Finding the Model Function (10)

λ0
x∗

0.025 0.135 0.2

45.0 315 440 359

49.0 110 225 128
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were used in the form ϕ(t) = y(t) + ∑ 

i=1

n

ai sin ωt, where n = 5, max
i

 ai = 10.905, and max
i

 ωi = 144,425.0. The maxi-

mum value of the disturbance was 79oC. Figure 6 presents the functions y(t) and ϕ(t) of the accurate and noise-af-

fected input data for the case λm(T) in the form (11). As a result of the calculations carried out, we have revealed the

necessity of coordinating the value of the residual (12) with the level of noise to halt the operation of algorithm I
(Fig. 7a). As far as algorithms II and III are concerned, we have established the stability of operation of these algo-
rithms to the disturbances of input data virtually for any real value of the residual (12) (Fig. 7b).

Conclusions. The method (considered in this work) of determination of λ(T) is highly efficient. Algorithms II
and III, related to evaluation of λ(T) in the Sobolev space W2

1[T(1), T(2)] of absolutely continuous functions, deserve
particular attention, since they demonstrate numerical stability in a wide range of disturbances of the input data of the
problem. Also, it should be noted that the algorithms proposed enable us to restore the thermal-conductivity coeffi-
cients with a discontinuous temperature derivative, which is of great practical interest.

NOTATION

b, length of the segment, m; c(T), heat-capacity coefficient, (W⋅h)/(m3⋅oC); Nx, number of nodes in the spatial
variable; Nt, number of nodes in the temporal variable; t, running instant of time, h; tf, final instant of time, h; T, tem-
perature, oC; x, space coordinate, m; x∗, point of measurement of the temperature, m; y(t), accurate input data, oC; w,

Fig. 6. Exact y(t) and noise-affected ϕ(t) values of the input data. y(t) and
ϕ(t), oC; t, h.

Fig. 7. Influence of the noise-affected input data on the results of calculation
of the thermal-conductivity coefficient according to algorithm I (a) [1) λ0; 2) λm;
3) λ3; 4) λ15] and algorithm II (b) [1) λ0; 2) λm; 3) λ21; 4) λ331; 5) λ21]. λ,
W/(m3⋅oC); T, oC.
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element of the Hilbert space; βn, descent coefficient; δ(x − x∗), Dirac function; λ(T), thermal-conductivity coefficient,
W/(m⋅oC); λ0, zero approximation; λn, nth approximation; λm, model function; εn, residual; ϕ(t), noise-affected input
data, oC; Ω, domain of definition; Λ, Hilbert space. Subscripts: f, final; m, model.
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